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ABSTRACT

The paper deals with numerical analysis of two-dimensional, steady,
inviscid flow between a blunt body at an angle of attack and the detached
shock wave. The so-called "direct" problem is investigated, i.e., the body
shape, angle of attack, and free-stream conditions are assumed to be known,
and the flow field as well as the shock shape are to be determined.
The problem is treated by the method of integral relations, proposed by A. A.
Dorodnicyn [1,2] and used first by O. M. Belocerkowski [3,41 in the symmetric
case. In the present investigation, the problem is reduced to numerical
integration of a set of four first-order ordinary differential equations with
three unknown initial values, which are calculated by use of the relaxation
method. The computations are performed for a prolate elliptical profile of
the axes ratio a/b =  4, at free-stream Mach number :‘ = 3, adiabatic
exponent K = 1.4 and for five angles of attack a --- 00, 10, 2.5°, 5° and 7.5°.
The relaxation method as elaborated by us turned out to be convergent in
all the cases investigated.

INTRODUCTION

From t he engineer's point of view it is often desirable to know the flow

field around a flying object in the  whole  range of angles of attack, and not

only for one particular value of this angle. In spite of this necessity, and
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due to rather serious mathematical difficulties of the problem, the bulk of
the existing theoretical investigations of hypersonic flow around blunt
bodies deals with the symmetric case, which corresponds to the symmetric
two-dimensional profile, or to the axisymmetric body, both at the angle of
attack equal to zero. The not very extensive research concerning the asym-
metric case is usually restricted, with few exceptions, to small angles of
attack, or to specific shock or body shapes. In the frame of the present
investigation we attempted to develop a method that would be free of
those restrictions, and suitable for computing the sub- and transonic flow
field between a body of a prescribed shape and the detached shock wave,
for any prescribed angle of attack.

This so-called "direct" problem was investigated in this paper under the
following simplifying assumptions:

The body is two-dimensional, convex,* and its slope is continuous.
The flow is two-dimensional, steady, and rotational ; the undisturbed
flow is uniform and hypersonic.
The gas is inviscid, not heat-conducting; the real gas effects are not
taken into account and the specific heats are constant.
The shock is governed by the Rankine-Hugoniot conditions.
The maximum entropy line wets the body, i.e., the stagnation
streamline must intersect the shock at such a point, where it is
normal.

To solve the problem stated, we applied in this paper the Dorodnicyn
method of integral relations [1,2], which proved itself to be a very powerful
tool in solving the direct hypersonic problem. The method was used
successfully by Belocerkowski f3-8], Tshushkin [6,7,9,10], Holt [11,12],
Traugott [13], and others for the computation of  symmetric  blunt-body
flows, both two-dimensional and axisymmetric. Lately it was applied also
to the  asymmetric  two-dimensional ease by Vaglio-Laurin [14], by Bazshin
[15,16] and by one of the present authors [17].t These papers [14_15], hav-
ing much in common with our approach, should be briefly reported here.

Vaglio-Laurin [14] discussed the possibility of straightforward applica-
tion of Dorodnicyn's method to the two-dimensional asymmetric case;
he formulated the set of ordinary differential equations, to which our
system is equivalent, and he proposed the above-mentioned condition (5),
which—together with Dorodnicyn's conditions imposed on the solutions in
the singular (saddle) points—allows the determination of the unknown

* This restriction is connected with the coordinate system  s, n applied in this in-
vestigation (Fig. 1).

'I' Some of the results included in the present paper are already published [17] .
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Figure 1. Nomenclature.

initial values. In this paper, as well as in both of Bazshin's papers [15 ,16]
the usual way [3-13] of straightforward numerical integration of the
system of the said equations, is followed. Vaglio-Laurin's approach was
different: he simplified the system and treated it by the PKL method.
The interesting result presented in his paper [141 is the velocity distribution
along a two-dimesional hypersonic profile with sonic shoulders.

Bazshin's paper [151 deals with a flat plate at four angles of attack. The
form of the profile used simplifies the trial-and-error procedure to a great
extent, because positions of both singular points are known. In his unpub-
lished paper [16] Bazshin investigated the flow around a blunt symmetric
profile, at Mach number M. = 5.8 and at an angle of attack a = 300• The
interesting and still unexplained feature of this case is a nodal point on
the shock wave. The smooth "crossing" of this singularity serves as one of
the conditions for determination of the unknown initial values.

SYMBOLS

GEOM ETRICA L SY MBOLS

scale length (the minor axis of the elliptical profile)
coordinate; normal to the body

R = (—ds/dO) radius of curvature
coordinate; a distance measured along the body
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x,y  rectangular coordinate system, in which the body shape
y(x)  is determined
coordinate of the stagnation point

a angle of attack
5 shock-wave distance

"initial" shock-wave distance measured along the normal
corresponding to the stagnation point

0  angle between the tangent to the body and the direction
of the uniform flow

a- shock-wave angle; angle between the tangent to the
shock wave and the direction of the uniform flow

ao 	 "initial" shock-wave angle corresponding to the stagna-




tion point
(riot shock-wave angle in the intersection point of the stagna-

tion streamline and the shock wave

Note:  It is understood that n,  R, s, x,  y are nondimensional quantities,
and that  b  is their scale.

GAS DYNAMIC QUANTITIES

a.  — NIKK  1— critical velocity
1

g = kp

h = re„

H = kp

K 1 

k —

2«

2 — K
in —

K — 1

= Mach number of the uniform flow
IC -(K-1)

P =
1 / = pressure

t  =  TP „

lb = =  velocity at tlie body

= velocity component s in I he  n and • direct ion, respectively

rna = W2 cos 0 — W1 sin  0

tri2sin  0 + w, cos  0

w = velocity modulus
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= M
K — 1 


2 + (K — 1) /if  2

2 sin2a
= w.(1 —

K + 1

wo 


X sin 2a
K + 1

z = pun v4

K = adiabatic exponent

1
X = 1

= = entropy function

3/.2 sin2a

= 1)

2
4KWZ2K(K — lyW o, 


'Pb — K2 — 1 K + 1 [ 1 — w20

p = TÇO 11(‘-1) = density

(K

= _ w2)1 /(K-1)

Notes: (1) All velocities are nondimentionalised by the maximum
velocity of the gas. All the pressures and densities are nondimentionalised
by their corresponding stagnation values in  front  of the shock wave.
(2) Subscripts b, (5, r.J,refer to the conditions at the body, at the shock,
and in the undisturbed flow, respectively.

SYMBOLS USED IN THE FINAL SYSTEM OF DIFFERENTIAL
EQUATIONS

A = (1 — w2h
2wr

K +
01 RPsin 0  — Q )(cos 0cos 2a + 	 1 )

111.,2sin20-

— (/) cos e+ Q  sin 0) sin 2cr]

( B = (1 — u2br 1 — la22)

1
C = ( rbvb TdVaI)

2 1 )D =  ha
(75- +
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E  = {lc + 1 poov„av,6sin 20-
1 ), [ es5 sin 0 — cos 0) sin 20-

2M.2 (
(C 2— 1 .

51112 + 	m

(vsa cos 0 + Ns sin 0) (cos 20- +
1 	 \1 2wo,


31,02 sin20-)K+ 1

G = — p (2 + k (1 — w2a)]

2

2k p (1 + 2c11-:-,2) + (1 — vZ)1

L = (1 + —5) tan (0" — 0)

P = 1 — v,i2

21).6N6

Q —
K — 1

THEORETICAL BACKGROUND

THE MAIN SYSTEM OF ORDINARY DIFFERENTIAL
EQUATIONS

In the (n, s) coordinate system, as shown in Fig. 1, the continuity equa-
tion and the condition of entropy conservation along the streamlines,
yield after suitable transformations the following formula:

at 

+  a

asan
[h(i. + n)] = o 


Similarly, t he continuity equation and t he moment tnn equation in the
n-direct ion yield:

az 

+  a [11 +   n

as an

Using now the method of integral relations in order to replace the equa-
tions obtained by an equivalent system of ordinary differential equations,
one can ehoose either the so-called "schema!" or "schema 2" of this method

2
vss

a„2
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[7]. In the first schema, some of the functions appearing in Eqs. (1) and (2)

are approximated by polygons or polynomials  in n,  so that  s  is the only

remaining independent variable. The reverse is true for the second schema.

The degree of the polynomial or the number of the polygon sides is
called the order of the approximation.

The choice of the schema depends obviously on the behaviour of the
functions involved, and also on the aim of the computation. If, e.g., in a
particular case a more detailed information in the s-direction is desired,
the first schema is more advisable.

We are interested mainly in the changes in velocity, pressure, and
density distributions on the body, caused by the changes of the angle of
attack, and the first schema seems to fit our purpose better. We also con-
fine ourselves to the first approximation, which gives anyway sufficient
accuracy in the hypersonie range of speeds [8]. So we approximate linearly
the three functions  g, t,  and z:

g = (-n-)( go — gh) gh (3)

t
=

(n—(5) —  tb (4)


(nN
z = (zb = 0) (5)Sr

in the region between the body (subscript  b)  and the shock (subscript  6).
Making use of the energy equation,

(Ep) 7.1)2 = 1  (6)

and of the approximating formulas (3)—(5), and also taking into account.
some purely geometric considerations as well as the Rankine-Hugoniot
conditions for the shock, we obtain the following syst em of three oridnary
differential equations:

(16 

L

ds
—

d6 G — FL
ds E

= 1 A
[D—CL F L)]

The right-hand sides depend only on  6, G-, v h  and  s.*

* The body shape is known, so R and 0 are known fuetions of  s.

dvb

ds
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COMPUTATION OF THE STREAMLINES

In order to evaluate gint,the stagnation streamline must be computed
in the asymmetric case, and the corresponding fourth equation must be
included in the system (7)-(9). It stems from the condition of stream-
function conservation along the streamline, and its final form is

dn v„n
dsv,R

(10)

The velocity components v„, vs are calculated consistently with the
approximating formulas (3)-(5) in the following manner. First, the values
g, t, and zare computed in the point considered. Then v„, v,,p, p are sought
as roots of the system of four algebraic equations:

t =  v(1. — 1,201/(r-1)

Z =  pv , n v

g = pv,!  kp

This must be done by a suitable trial-and-error procedure.

THE INITIAL VALUES AND THE ADDITIONAL CONDITIONS

The solution to the problem in question are the three functions vb(s),

gs), cr(s). In order to obtain them, Eqs. (7)-(10) must be integrated start-
ing from the properly chosen initial point and with proper initial values.
The stagnation point seems to be the best starting point for the integra-
tion—at least in the present authors' opinion gained on the ground of
rather negative results of a different approach.

Denoting xo, So, a() the position of the stagnation point on the body
(Fig. 1)and the (unknown) init ial values of (5and 0-,respectively, one may
pose the initial value problem as follows:

1 at r = .ro, where s = 0: v o - 0
o — 00

c = ao

n = 0
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All the three values x0, So, go are unknown, so that three additional
conditions must be imposed in order to evaluate them. The first two of
these values express the requirement that the numerator and denominator
of Eq. (9) must vanish simultaneously, so that the velocity slope remains
finite:

D — CL —— FL)

D — CL — -ÉA (G — FL)

rb =  -FaK

=


=

0


0




The third condition stems from assumption (5) accepted at the beginning
of this paper, which says

r
(Tint — —2 = v 


In concluding this section the assumption of the identity of the maximum
entropy streamline and the stagnation streamline should be briefly dis-
cussed. This was first introduced by Mangler [18], whose method for
solving the indirect problem applied only if this assumption was taken
into account. If not, the method would lead "to an unlikely flow pattern."

In fact, the same assumption was made in all the papers [3-13] dealing
with the symmetric case, but it does not cause any doubts there due to the
symmetry of 1 he flow investigated. It does not look so obvious, however, in
the asymmetric case, and there was an attempt. [14] to prove its correct-
ness. The attempt was not, quite successful [19,20] and recently Swigart
published his work [19,20], which does not make any use of the assump-
tion in question. Moreover, Swigart's results, obtained by the use of his
method of solving the indirect problem, show a discrepancy between the
maximum entropy streamline and the stagnation streamline.

In the opinion of 1 he present authors, however, Swigart's very interesting
result s do not, undermine too severely the assumption ill question. First,
the discrepancies are very small, and second, Swigart's method is not
exact , so t hat the discrepancies might be caused by the truncation errors.
In any case, at the present state of affairs, the identity of the maximum
entropy and stagnation strealnlines seems to be a justified  assumption,
which while not expressing the whole truth is at least a fair approximation.
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SOME DETAILS OF THE NUMERICAL PROCEDURE

ERROR INDICATORS

The whole computing procedure consists of two main parts, i.e.,
(1) evaluation of the initial values xo, So, go by the use of the proper itera-
tion technique; (2) computing of final results such as velocity and pressure
distribution along the body.

The iteration process is based on the so-called "error indicators," i.e.,
certain quantities, which indicate the degree of accuracy of fulfilling the
conditions (12)-(14).

The evaluation of the three error indicators E1, E2, E3 chosen in the
present work proceeds as follows.

In order to evaluate El, the system of three differential equations
(7)-(9) is numerically integrated for a set of arbitrary initial values xo,

6o, co with a  positive  step* As, until the velocity modulus Vb becomes
equal to a prescribed quantity, a little lower than the critical velocity
a. (Figs. 2a and 2b), or until the numerator [D — CL — A/E(G — FL)]
becomes equal to or less than zero (Fig. 2c). The integration pauses then and
the error indicator E1 is evaluated by the use of linear interpolation or
extrapolation, as shown schematically in Fig. 2. In the schema according
to Fig. 2a, the error indicator is assumed to be positive; in the schema
shown MI Figs. 2b and 2c it is assumed to be negative.

The same is true as far as evaluation of the second error indicator E2 is
concerned, only the integration is performed with a negative step As < O.]

The definition of the third error indicators E3 is in full accordance with
the condition (14), i.e.,

E3 = ( • int — (15)

In order to evaluate E2, the system of  four  differential equations (7)-(10)
is integrated numerically starting from the stagnation point (S in Fig. 1.),
and the integration proceeds until the computed stagnation streamline
reaches the shock wave:

n > (16)

The shock-wave angle ai„, in the intersection point (A in Fig. 1) of the
streamline and of the shock is interpolated, and the evaluation of the third
error indicator follows, according to formula (15).

It should be mentioned here, that in computations of the stagnation
streamline n instead of s was used as the independent variable in the equa-
tions (7)-(10), for the sake of convenience.

*The step was of the order 2.10-2-4.10-2, and the Runge-Kutta-Gill method was
used in the integration.
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ITERATION TECHNIQUE

The schema of computing the successive approximations of xo, (50,and
go is shown in the flow chart (Fig. 3). The iteration procedure turned out
to be convergent, provided that the values of xo, So, and rro used as the
first approximation were not too far from the correct ones. As can be seen
from the flow chart, the correct values of xo, So, and go are approached
from both sides, and the iteration process terminates only when the
difference between two approximated values, corresponding to two error
indicators of different sign, is smaller than a prescribed value ß.

Q)

1--)-
cs Ei>0

1/410C/7.


d 1> 0Xo

NUA,i4-R,4

DEN0Af C4'
47-04)

I

.1E2
>0

<* X
o

I ( o
Icis)

k
DENOMINATOR

e
/P4 '-

09

.1<

coo

El <0 I
\1E2 <0

I cis

C) 0A./4.

DENOMINATOR  '941'0

I

o E1<0  1 1I  I becoc,r4,

61<0 III x
I I I (2
I H cc)

c)

Figure 2. Evaluation of "error indicators."
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It should be noted that xo, So, and ao must be computed with great accu-
racy—i.e., at least to five significant numbers.

FINAL RESULTS

When the initial values xo, So, and o-o are computed with sufficient
accuracy, the aim of the iteration procedure is achieved, and the computa-
tion and printing out of the final results may follow.

They consist of the functions vb(s), pb(s), pb(s), cr(8), 6(s), v,b(s), v„6(s),
pa(s), p5(s), n(s), x(s), as well as of the x ,  y-coordinates of the shock front
and of the stagnation streamline.

The functions eb, u,  5, and n are computed by integration of the equa-
tions (7)—(10),and the rest of the above-mentioned functions is evaluated
at each step of integration using the proper relations between them and

o, a, and S. The relations in question are also given above.

START

INPUT INITIAL
VALUES X ,6

COMPUTE NEW COMPUTE NEW COMPUTE N\N COMPUTE El
VALUE OF b VALUE OFb VALUE OF 6

COMPUTE NCOMPUTE NEW
VALUE OF xVALUE OF xo

COMPUTE NEW

VALUE OF 6o

NO
ISIV'El)-bo(-E1)1<P1 ?

YES

COMPUTEE2

NO
ISIxo (+E2)-x0(-E2)I< P2 ?

YES

COMPUTEE3

NO
15160(+ E3)-60(E3)1<133 ?

YES

COMPUTE AND PRINT

FINAL RESULTS

STOP

Figure 3. Flow chart for the calculating procedure.
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The only difference between using the equations for calculation of the
error indicators and for calculation of the final results consists in transit ion
through the critical (sonic) points. This transition is immaterial when
computing the error indicators, because the integration always pauses
before the velocity V b reaches the critical value. It becomes important,
however, if the supersonic region in the vicinity of sonic lines has to be
computed in order to permit extension of the flow-field calculations by the
more exact method of characteristics. In our paper the transition across
the body sonic point is performed in the following simple way. In the
interval of about two steps "in front" of the sonic point, and about two
steps "behind" -it, the velocity gradient dvb/ds is kept constant. In this
manner the appearance of overflow in the sonic point, and the numerical
inaccuracies in its vicinity are avoided.

RESULTS

The computations were performed on a GIER electronic computer for
Mach number Moo = 3; for adiabatic exponent K = 1.4; for a prolate
elliptic profile of axes ratio a/b = 4 at five angles of attack a = 0'; 1";
2.5'; 5'; 7.5°.
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0,01 90,1








0
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1 2 3 4 5 6 7 OE°
Q22

Figure 4. The initial values vs. the angle of attack.
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The variation with a of initial values .ro, bo, an is shown in Fig. 4 and in
Table 1. It is interesting to note, that ao and x0 vary with a almost lineraly.

Some of the remaining results are contained in Figs. 5-10, and in
Tables 2 and 3.

It can be easily seen (Fig. 5) that the shape of the subsonic region as
well as the positions of critical points both on the shock and on the body
(Fig. 6) change very distinctly with the angle of attack.

TABLE I

a So so 00

0° 0.000000 0.229896 90.0000

10 0.007417 0.230100 90.0963

2.5° 0.0185990.231514 90.2425

5'0.0374090.236252 90.4833

7.5°0.0567240.244289 90.7271

TABLE 2


(a = 00)

Body coordinates

X

las-dynamic quantities

vb/aKph pb

Shock-wave coordinates and


angle

176 ya a

0.000 0.000 0.000 0.328 0.328 0.000 - 0.230 90.00

-0.040 0.003 0.124 0.325 0.326 - 0.076 - 0.227 85.35

- 0.079 0.012 0.256 0.316 0.319 -0.151 - 0.218 81.46

- 0.116 0.027 0.390 0.300 0.308 - 0.224 - 0.205 78.54

-0.151 0.046 0.516 0.280 0.293 -0.205 - 0.189 76.31

- 0.184 0.068 0.626 0.259 0.277 - 0.36.1 -0.171 74.32

- 0.215 0.094 0.715 0.240 0.262 -0.431 - 0.151 72.28

- 0.244 0.121 0.786 0.223 0.249 - 0.496 - 0.129 70.22

- 0.258 0.136 0.817 0.217 0.244 - 0.528 - 0.177 69.25

- 0.272 0.150 0.846 0.210 0.239 - 0.560 - 0.105 68.30

- 0.285 0.165 0.872 0.204 (1.234 - 0.501 - 0.092 67.38
- 0.297 (1.181 0.896 0.190 0.229 - 0.621 - 0.079 66.49

- 0.310 0.197 0.019 0.193 0.224 - 0.652 - 0.066




- 0.322 0.213 0.040 0.188 0.220 - 0.681 - 0.052 64.83
- 0.333 0.229 0.961 0.183 0.216 - 0.711 - 0.03F1 64.04
- 0.345 0.245 0.981 0.178 0.212 - () .740 - 0.024 63.27
- 0.356 (1.262 1.000 0.173 0.208 - 0.760 - 0.009 (12.53
- 0.367 0.279 1.019 (1.169 0.204 - 0.707 0.006 61.81
- 0.377 (1.296 1.037 0.164 0.200 - 0.825 (1.021 61.11
- 0.388 0.3 I :i 1.054 0.160 0.197 - 0.852 0.037 60.43



HYPERSONIC BLUNT-BODY PROBLEM 995

TABLE 3

(« = 7.5°)

Body coordinatesGas-dynamic

rb/aK

Shock-wave coordinates andquantities
angle

Pb PG?la

0.057 0.0060.000 0.328 0.3280.111- 0.232 90.73
0.017 0.0010.119 0.326 0.3260.034I- 0.240 86.14

- 0.023 0.0010.252 0.316 0.320- 0.045- 0.242 81.92
- 0.062 0.0080.397 0.299 0.307-0.124- 0.239I78.59
- 0.100 0.0200.543 0.275 0.289- 0.201-0.231 76.10
- 0.136 0.0370.678 0.2480.269- 0.279- 0.221 74.01
- 0.170 0.0580.788 0.2220.249- 0.355- 0.20971.78
- 0.186 0.0700.835 0.213 0.241- 0.392- 0.20170.63
- 0.202 0.0820.876 0.203 0.233- 0.429 - 0.19360.43
- 0.217 0.0960.912 0.194 0.226- 0.466 - 0.184614.24
- 0.232 0.1090.947 0.186 0.219- 0.502- 0.17467.05
- 0.246 0.1230.983 0.1760.211- 0.538- 0.16465.81
-0.260 0.1381.009 0.171 0.206- 0.573 - 0.153 64.73
- 0.273 0.1521.034 0.165 0.201-0.608 -0.142 63.74
- 0.286 0.1681.056 0.160 0.196-0.642 -0.13062.82
- 0.299 0.1831.072 0.157 0.194- 0.676 - 0.117 62.10

0.057 0.0060.000 0.328 0.3280.111 - 0.232 90.73

0.095 0.018-0.115 0.326 0.3270.185 - 0.218 94.91
0.131 0.035- 0.230 0.318 0.3210.256 -0.20098.22
0.166 0.055- 0.343 0.3060.3120.323- 0.180100.67
0.198 0.079- 0.447 0.2920.3020.388- 0.157102.57
0.228 0.105- 0.538 0.2760.2900.451- 0.133 104.26
0.256 0.133- 0.614 0.2610.2790.512- 0.108 105.93
0.283 0.163- 0.676 0.2480.2690.571- 0.081107.60
0.308 0.194-0.728 0.237 0.2600.629- 0.053 109.22
0.332 0.227- 0.774 0.227 0.2520.685- 0.024 I 10.75
0.343 0.243-0.794 0.223 0.241)0.712- 0.009111.46
0.354 0.260- 0.813 0.2180.2450.7390.006112.16
0.365 0.276- 0.832 0.214 0.2420.766 0.021 1 I 2.83
0.376 0.293- 0.849 0.210 0.2380.71)2 0.037 I 13.47
0.3860.310-0.865 0.2060.235(4.8180.053114.09
0.3960.328- 0.881 0.2020.2320.8440.06!)114.69
0.406 0.345-0.896 0.1900.221)0.8690.085115.26
0.416 0.363- 0.910 0.1950.2260.8940.1(41115.81
0.4250.380- 0.923 0.1920.2240.9190.118116.35
0.4350.398-0.936 0.1890.2210.9440.13411(4.87
0.4440.416- 0.949 0.1860.2190.9680.151I 17.37
0.453 0.434- 0.962 0.183 0.2160.9920.168I 17.85
0.462 0.452- 0.974 0.180 0.21.11.0160.185118.33
(1.4700.470- 0.086 0.1770.2111.0400.202118.7!)
0.471)0.488- 0.997 0.17.4 0.2091.0630.220119.24
0.4870.50(4- 1.001) 0.171 0.2061.0860.237I 19.69
0.41150.524- 1.020 0.1690.2041.1090.255120.13
0.5030.543- 1.031(1.1660.2021.1320.272120.55

0.511 0.561- 1.042 0.163 0.1991.154 0.200 120.97
0.518 0.579-1.047 0.162 0.1981.177 0.308 121.36
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Distributions of velocity components and gas-dynamic parameters along
the stagnation streamline were also computed, but they are not included
in the present paper because the calculation of the stagnation streamline
as a whole is rather subject to the main purpose of computations. One
feature of the results concerning the streamline should be mentioned,
however. It turns out that the entropy is not constant along the stagnation
streamline, as it should be, but reaches the maximum value only in both
end points of the streamline (points A and S in Fig. 1). This discrepancy
is due to the approximations (3)—(5) and it is unavoidable. It could be
remedied only in a rather artificial and inconsistent manner, if one of
these approximating formulas were abandoned and the condition of
entropy conservation were used instead in calculation of velocity com-
ponents on the streamline.

STAGNATION STREAMLINE

Q2

0,20,40,6 Q8 y

SONIC LINE

SHOCK

- 0,2

SONIC LINE

1,0

Figure 5. Shock shapes, sonic lines and stagnation streamlines

for two angles of attack - = 0 0 and =- 7.5 0 .
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COMMENTARY

J. P. GUIRAUD  (0.N.E.R.A., Chatillon-sur-Ragneux, France):  Est ce que la
neassité que vous avez de faire appel à une condition inspirée par la conjecture de
Managler n'est pas due au fait que la méthode ne permet pas de tracer avec
précision la ligne de courant d'arrêt. En construisant cette ligne de courant a
posteriori, ne ferait-il pas possible de remplacer la condition que vous avez pris par
une condition de &bit?

REPLY

The brief comments of Dr. Guiraud call for a rather lengthy explanation.
There exists an infinite number of "solutions" to the problem considered in

the paper, each of them consisting of three functions for the velocity distribution
along the body, the shock distance, and the shock angle, respectively, and each of
them satisfying the conditions imposed in the two critical points. The method of
integral relations itself does not contain (in the discussed ease) any condition,
either of physical or of mathematical nature, which could serve the purpose of
telling which one of the "solutions" is the physically meaningful one. Therefore,
an additional condition must be imposed. Its logical necessity has nothing to do
with computation of streamlines.

On the other hand, the streamline pattern corresponding to each "solution" is
unique: there exists only one manner of computing it within the frame of the
method. Accordingly, the "solutions" differ also in the shape of the stagnation
streamline, and in such a sense—and only in such a sense—could one say that the
stagnation streamline is not determined  aver precision.  The meaning of this lack
of precision is, however, obvious: it follows from the non-uniqueness of the solution
as a whole.

The assumption of identity of the maximum entropy line and the stagnation
streamline, accepted in the paper, can be applied in many different ways in order
to select the proper solution.

The condition for the mass flow and the condition used in the present paper,
are examples of two such possible ways. They are strictly equivalent, at least
formally—the second one, however, being more convenient from the computational
viewpoint.




